

Mathematics Bridging Work

Pack A

Year 10 into 11 for 2024/25

$\sum_{i=0}^{n} (p_2(x_i) - y_i)^2 \forall 2x = \frac{2tyx}{1 - ty^2x} tyx = \frac{2tyx}{\cos x}$ $\lambda x - y + z = 1$
$\iiint_{M} 2 dx dy dz = \int_{0}^{2\pi} \left(\int_{0}^{2} \left(\int_{\frac{1}{2}}^{1} r r dr dr dr \right) dr \right) dr = \int_{0}^{2\pi} \left(\int_{0}^{2} \left(\int_{\frac{1}{2}}^{1} r r dr dr dr dr dr dr $
$-x = 0$, $I = (1,10)$ $n \to +\infty$ $\frac{3}{3} \cdot \frac{1}{3} \cdot $
$x \cdot \cos^3 x \cdot ok $ $y = \sqrt[3]{x+1} x = tyt $
17
27 (F'. F'. F'. F) 2 6 3
L.B. FEC
$\frac{1}{2} + \frac{y^2}{a^2} + \frac{z^2}{a^2} = 0$ $\int_{\mathcal{L}} \int_{\mathcal{L}} \int_{\mathcal$

Tutor Group: ___

Year 10 Summer Revision Work

Pack A Higher (sets 1 & 2)

This pack contains:

- List of all higher topics and Sparx video/task number (grades 4 to 9)
- A complete set of higher practice papers, followed by the mark scheme.

How to use this pack:

- 1- Identify the topics you need to revise first from the list (you do not need to do all of them)
- 2- Watch the video & try the task
- 3- Little and often 2 to 3 videos and tasks per revision session
- 4- Complete the practice paper 1 odd questions
- 5- Mark and purple pen your answers
- 6- How did you do? Are there any topics you need to revisit? Mark them on the revision list and go to step 2
- 7- Complete practice paper 2 odd questions
- 8- Mark and purple pen your answers
- 9- How did you do? Are there any topics you need to revisit? Mark them on the revision list and go to step 2
- 10- Complete the practice paper 3 odd questions
- 11- Mark and purple pen your answers
- 12- Repeat the process for each of the 3 papers but this time you complete the even questions.

Number

Topic	Topic code	R	Α	G
Calculating with roots and fractional indices	U851, U985, U772, U299			
Converting recurring decimals to fractions	U689			
Surds	U338, U663, U872, U499			
Rationalising the denominator	U707, U281			
Error intervals	U657, U301, U587			

Algebra

Topic	Topic code	R	Α	G
Expanding triple brackets	U606			
Operations with algebraic fractions	U685, U457, U824			
Factorising quadratic expressions: ax ² +bx+c	U858			
Simplifying algebraic fractions	U294			
Factorising to solve quadratics equations	U228, U960			
Using the quadratic formula	U665			
Completing the square to solve quadratics	U397, U589			
Quadratic equations in context	U150			
Quadratic simultaneous equations	U547			
Index laws	U235, U694, U662			
Equation of a straight line: Perpendicular lines	U898			
Quadratic graphs: Turning points	U769			
Quadratic simultaneous equations on graphs	U875			
Exponential graphs	U229			
Exponential growth and decay problems	U988			
Trigonometric graphs	U450			
Graph transformations	U598, U487, U455			
Velocity-time graphs	U937, U562, U611			
Rate of change graphs	U638, U652, U862			
Estimating gradient from a curve	U800			
Estimating area under a curve	U882			
Equation of a circles and tangents	U567			
Linear inequalities as graph regions	U747			
Quadratic inequalities	U133			
Functions	U637, U895, U448, U996			
Recurrence relations	U171			
Quadratic sequences	U206			
Iteration and numerical methods	U434, U168			
Algebraic proof	U582			

Ratio and proportion

Topic	Topic code	R	Α	G
Algebraic direct and inverse proportion	U407, U138			
Compound units: Density problem solving	U910			

Geometry

Topic	Topic code	R	Α	G
Congruence proofs	U866, U887			
Enlargements	U134			
Describe combined transformations	U766			
Circle theorems: Angles inside a circle	U459, U251			
Circle theorems: Tangents and chords	U489, U130			
Circle theorems problems	U808			
Prove circle theorems	U807			
Volume of frustums	U350			
Volume: Problem solving	U543, U426			
Similar Shapes: Area and volume	U630, U110			
Pythagoras' Theorem in 2D and 3D	U385, U541			
Right-angled trigonometry: Problem solving	U319, U283, U545, U967			
3D trigonometry	U170			
The area rule	U592			
Sine rule	U952			
Cosine rule	U591			
Trigonometry and bearings	U164			
Vectors problems	U781, U560			

Probability

Topic	Topic code	R	Α	G
Product rule for counting	U369			
Conditional probability	U246, U821, U806			
Probability from Venn diagrams	U476, U748, U699			

Statistics

Topic	Topic code	R	Α	G
Averages	U877, U717			
Cumulative frequency diagrams	U182, U642			
Box plots	U879, U837, U507			
Frequency polygons	U840			
Histograms	U814, U983, U267			
Capture-recapture	U328			

GCSE Mathematics Practice Tests: Set 6

Paper 1H (Non-calculator)

Time: 1 hour 30 minutes

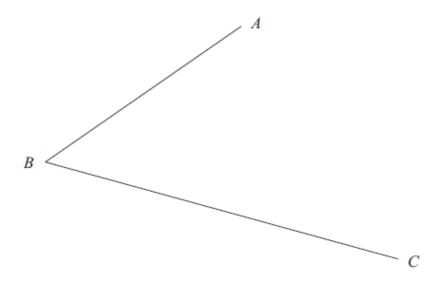
You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.


Advice

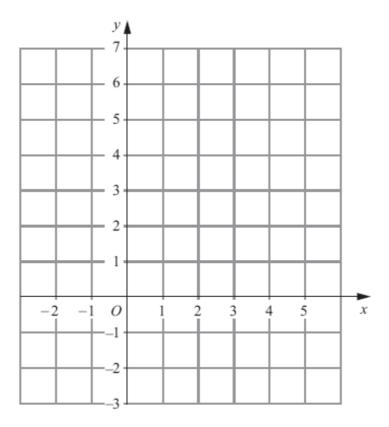
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions. Write your answers in the spaces provided. You must write down all the stages in your working.

1. Use ruler and compasses to construct the bisector of angle *ABC*. You must show all your construction lines.

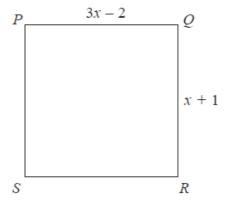
(Total 2 marks)

2. Peter, Tarish and Ben share £54.


Tarish gets three times as much money as Peter. Ben gets twice as much money as Tarish.

How much money does Ben get?

£	 	 •		• •			•	 				•	•	


(Total 3 marks)

3. On the grid draw the graph of x + y = 4 for values of x from -2 to 5

(Total 3 marks)

4. *PQRS* is a square.

All measurements are in centimetres.

Show that the perimeter of the square is 10 cm.

(Total 4 marks)

5. The diagram shows the plan of a floor.

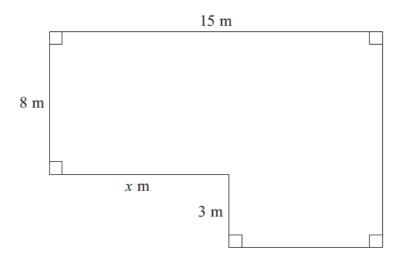


Diagram **NOT** accurately drawn

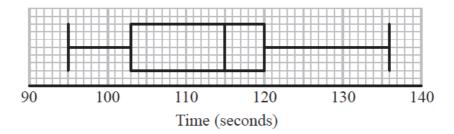
The area of the floor is 138 m^2 .

Work out the value of x.

(Total 4 marks)

There are 40 litres of water in a barrel.
The water flows out of the barrel at a rate of 125 millilitres per second.
1 litre = 1000 millilitres.
Work out the time it takes for the barrel to empty completely.
seconds (Total 3 marks)
(a) Work out $\frac{2}{5} + \frac{1}{4}$
J •
(2)
(b) Work out $3\frac{1}{8} \times \frac{2}{5}$
Give your answer as a fraction in its simplest form.
(3)

Lillian, Max and Nazia share a sum of money in the ratio 2:3:5	
(a) What fraction of the money does Max receive?	
	(2)
Nazia receives £60	
(b) Work out how much money Lillian receives.	
	£
	(3) (Total 5 marks)
	(Total 5 marks)


8.

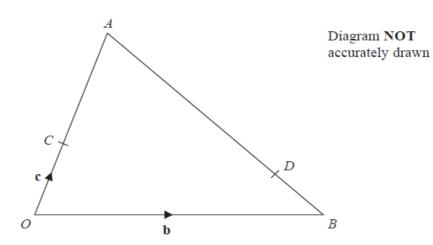
).	(a) Solve $11 - 4y = 6y - 3$	
	<i>y</i> =	(2
	(b) Solve $x^2 - 3x - 40 = 0$	
	<i>x</i> =, <i>x</i> =	
		(3 (Total 5 marks
	There are 11 pens in a box.	
	6 of the pens are black. 3 of the pens are red. 2 of the pens are green.	
	Henry takes at random two pens from the box.	
	Work out the probability that he takes one black pen and one green pen.	
		(Total 4 marks

11.	The size of the obtuse angle in an isosceles triangle	le is x° .
	Write an expression, in terms of x , for the size, in	degrees, of one of the other two angles.
		(Total 2 marks)
12.	(a) Write down the value of $9^{\frac{1}{2}}$	
14,	(a) Write down the value of 9	
		(1)
	(b) Write down the value of $8^{-\frac{1}{3}}$	
		(1)
	$2^k = 16$	
	(c) Write down the value of <i>k</i> .	
		(1)
	(d) Solve $8^5 = 2^{2m+3}$	
		(3)
		(Total 6 marks)

13. Tom recorded the times, in seconds, some boys took to complete an obstacle course.

He drew this box plot for his results.

Tom also recorded the times some girls took to complete the obstacle course.


Here are the times, in seconds, for the girls.

99	101	103	106	108	109	110	110	111	112
113	114	115	115	117	120	124	125	132	

Compare the distribution of the times for the boys with the distribution of the times for the girls.

14.	(a)	Write 8.2×10^5 as an ordinary number.	
	(b)	Write 0.000 376 in standard form.	(1)
	, ,		
			(1)
	(c)	Work out the value of $(2.3 \times 10^{12}) \div (4.6 \times 10^{3})$ Give your answer in standard form.	
			(2)
			(Total 4 marks)

15.

In the diagram,

$$\overrightarrow{OB} = \mathbf{b}$$

$$\overrightarrow{OC} = \mathbf{c}$$

$$\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OA}$$

$$\overrightarrow{BD} = \frac{1}{4} \overrightarrow{BA}$$

Find CD in terms of **b** and **c**.

Give your answer in its simplest form. You must show all your working.

.....

Two events, A and B , are mutually exclusive.	
P(A) = 0.3	
P(B) = 0.5	
(a) Work out P(A')	
	(1)
(b) Work out $P(A \cup B)$	
	(1)
P(C) = 0.4 P(D) = 0.2	
$P(C \cap D) = 0.06$	
(c) Are <i>C</i> and <i>D</i> independent events?	
Explain your answer.	
	(2)
	(Total 4 marks)

16.

17.	Simplify fully	$\frac{2x^2 + 9x - 5}{6x^2 - 5x + 1}$			

(Total 3 marks)

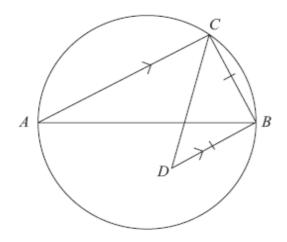
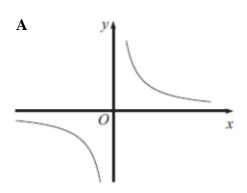


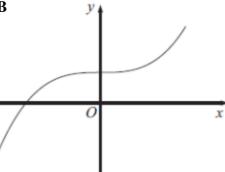
Diagram NOT accurately drawn

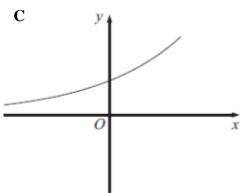
AB is a diameter of a circle.

C is a point on the circle.

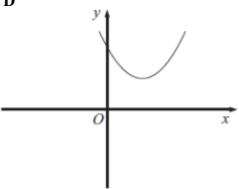

D is the point inside the circle such that BD = BC and BD is parallel to CA.

Find the size of angle *CDB*.


You must give reasons for your answer.


	. °
(Total 4 mark	s)

19.



B

D

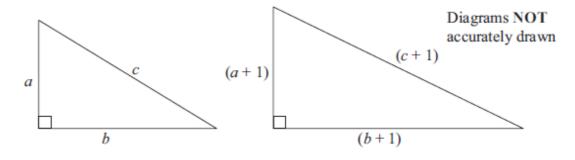
Each equation in the table represents one of the graphs $\bf A$ to $\bf D$. Write the letter of each graph in the correct place in the table.

Equation	Graph
$y = x^2 - 4x + 5$	
$y = 4^{2x}$	
$y = x^3 + 4$	
$y = \frac{4}{x}$	

(Total 3 marks)

20.	Expand (1 -	$+\sqrt{2}$)(3	$3-\sqrt{3}$	2)
			· · — /(·	- '	_,

Give your answer in the form $a + b\sqrt{2}$ where a and b are integers.


.....

(Total 2 marks)

- **21.** Umar thinks $(a+1)^2 = a^2 + 1$ for all values of a.
 - (a) Show that Umar is wrong.

(2)

Here are two right-angled triangles. All the measurements are in centimetres.

(b) Show that 2a + 2b + 1 = 2c

(3)

a, b and c cannot all be integers.

(c) Explain why.

(1)

(Total 6 marks)

		1MA1 Practice pa	pers Set 6: Pa	per 1H (F	Regular) mark scheme – Version 1.0
_	stion	Working	Answer	Mark	Notes
1				2	M1 for correct intersecting arcs
					A1 for correct angle bisector
2		P: T: B = 1: 3: 6 $54 \div 10 \times 6$	32.40	3	M1 for 1 : 3 : 6 or any three numbers in the ratio 1:3:6 in any order
					M1 for $54 \div (1 + 3 + 6) \times 6$
		OR			A1 for 32.4(0)
		OK			Alternative:
		e.g.			M1 for 1: 3: 6 oe or $P + 3P + 6P$ (=10P) oe,
		T = 3P			e.g. $T/3 + T + 2T = 10T/3$ or
		B = 2T			e.g. B/6 + B/2 + B (=10B/6) or 5.4(0) or 16.2(0) seen
		So, B = 2(3P) = 6P			M1 for $54 \div 10 \times 6$ or $[54 \frac{\div' 10}{3'}] \times 2$
		P+T+B=P+3P+6P =10P			$ \frac{\div' 10}{\text{or } 54 \mathbf{6'}} \text{ oe} $
		$P = 54 \div 10 =$			A1 for 32.4(0)
		£5.40			OR
		$B = 6 \times £5.40$			M1 for a partial decomposition of £54 in ratio 1:3:6, e.g. (£)5 +(£)15 + (£)30 (=(£)50)
					M1 for a decomposition of the remaining amount in ratio 1:3:6, e.g. $40(p) + 120(p) + 240 (=400(p))$
					A1 for 32.4(0)
3			graph	3	(Table of values)
		x -2 -1 0 1 2			M1 for at least 2 correct attempts to find points
		y 6 5 4 3 2			by substituting values of x
					M1 ft for plotting at least 2 of their points
					(any points plotted from their table
					must be correct)
					A1 for correct line between $x = -2$ and $x = 5$
					or
					(No table of values)
					M2 for at least 2 correct points (and no incorrect
					points) plotted
					or line segment of $x + y = 4$ drawn
					(ignore any additional incorrect segments)
					(M1 for at least 3 correct points plotted with
					no more than 2 incorrect)
					<u> </u>

		1MA1 Practice pa	pers Set 6: Pa	per 1H (F	Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
					A1 for correct line between $x = -2$ and $x = 5$
					or
					(Use of $y = \mathbf{m}x + \mathbf{c}$)
					M2 for at least 2 correct points (and no
					incorrect points) plotted
					(M1 for $y = 4 - x$ or line drawn with
					gradient of -1 or line drawn with a y
					intercept of 4 and a negative gradient)
					A1 for correct line between $x = -2$ and $x = 5$
4			Proof	4	M1 for setting up a correct equation in <i>x</i> ,
					eg. $3x - 2 = x + 1$
					M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
					M1 (dep) for ("1.5" + 1) \times 4 or (3 \times "1.5" - 2) \times 4
					or $(3 \times "1.5" - 2) \times 2 + ("1.5" + 1) \times 2$
					C1 (dep on M3) for completing the proof resulting in a perimeter of 10
					OR
					M1 for setting up a correct equation in x ,
					eg. $2(3x-2) + 2(x+1) = 10$
					M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
					M1 (dep) for "1.5" + 1 and $3 \times$ "1.5" - 2
					C1 (dep on M3) for completing the proof resulting in a justification that the shape is a square
5			9	4	M1 for method to find area of one rectangle,
					eg $15 \times 8 \ (=120)$ or $15 \times 11 \ (=165)$
					M1 (dep) for subtracting from/by given area,
					eg (138 – "120") (=18) or "165" – 138 (=27)
					M1 for final step from complete method shown,
					eg 15 – "18"÷ 3 or "27" ÷ 3
					A1 cao
					OR

		1MA1 Practice pa	pers Set 6: Pa	per 1H (F	Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
					M1 for a correct expression for the area of one rectangle, $eg (8 + 3) \times (15 - x) \text{ or } 8 \times x$ M1 (dep) for a correct equation $eg (8 + 3) \times (15 - x) + 8 \times x = 138$ M1 for correct method to isolate x , eg $3x = 27$ A1 cao
6		$\frac{40000}{125} = \frac{8000}{25}$ = 320 seconds	320	3	M1 for 40 × 1000 or 125 ÷ 1000 or 40000 or 0.125 M1 for \(\frac{40000'}{125}\) or \(\frac{40}{0.125}\), A1 cao OR M1 for 1000 ÷ 125 M1 for '8' × 40 A1 cao
7	(a)	$\frac{8}{20} + \frac{5}{20}$	$\frac{13}{20}$		M1 for both fractions expressed with a suitable common denominator (multiple of 20) and at least one of the two fractions

		1MA1 Practice pa	pers Set 6: Pa	per 1H (F	Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
	(b)	$\frac{25}{8} \times \frac{12}{5}$	$\frac{15}{2}$		correct A1 for $\frac{13}{20}$ oe or M1 for $0.4 + 0.25$ A1 for 0.65 or M1 for table structure, all cells correct A1 for $13/20$ oe M1 for a correct method to convert to improper fractions or $\frac{(3 \times 8 + 1)}{8}$ M1 (dep) for A1 for or $\frac{15}{2}$ or 7.5 (SC: B2 for 7.5)
8	(a)	$\frac{3}{2+3+5}$	3 10	2	M1 for $\frac{3}{2+3+5}$ A1 for $\frac{3}{10}$ oe
	(b)	$60 \div 5 = 12$ $12 \times 2 =$	24	3	M1 for 60 ÷ 5 M1 for "12" × 2 A1 for 24 cao
		Alternative:			Alternative:
		Total sum = $60 \times$			M1 for $60 \times 2 = 120$ seen
		2 = 120			M1 for $120 \times 2 \div 10$
		Lillian = $\frac{2}{10}$ of			A1 cao
		120 =			
		$120 \times 2 \div 10$			SC: B2 for 24, 36 and 60
					SC: B1 for 36 on answer line

		1MA1 Practice pa	pers Set 6: Pa	per 1H (F	Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
9	(a)	11 + 3 = 6y + 4y $14 = 10y$	1.4	2	M1 for collecting the y terms or the numbers on one side of equation, eg $11 = 6y - 3 + 4y$ or $11 - 4y + 3 = 6y$ A1 for 1.4 or $\frac{14}{10}$ oe
	(b)	(x-8)(x+5)	8, -5	3	M2 for $(x - 8)(x + 5)$ (M1 for $(x \pm 8)(x \pm 5)$ A1 cao 8 and -5
		OR			OR
		$\frac{-(-3) \pm \sqrt{(-3)^2 - 4}}{2 \times 1}$	×1×-40		M1 for correct substitution in formula of $a = 1, b = \pm 3$ and $c = \pm 40$
		$\frac{3 \pm \sqrt{169}}{2} = \frac{3 \pm 13}{2}$			M1 for reduction to $\frac{3 \pm \sqrt{169}}{2}$ A1 cao 8 and -5
10		$ (\frac{6}{11} \times \frac{2}{10}) + (\frac{2}{11} \times \frac{6}{10}) $ $ = \frac{12}{110} + \frac{12}{110} $	24 110	4	B1 for $\frac{2}{10}$ or $\frac{6}{10}$ oe seen as the 2^{nd} probability M1 for $(\frac{6}{11} \times \frac{2}{10})$ or $(\frac{2}{11} \times \frac{6}{10})$ oe M1 for $(\frac{6}{11} \times \frac{2}{10}) + (\frac{2}{11} \times \frac{6}{10})$ o.e. A1 for $\frac{24}{110}$ oe Tree diagram method B1 for $\frac{2}{10}$ or $\frac{6}{10}$ oe seen as the 2^{nd} probability M1 for $(\frac{6}{11} \times \frac{2}{10})$ or $(\frac{2}{11} \times \frac{6}{10})$ oe

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0										
Que	stion	Working	Answer	Mark	Notes						
Que	stion				M1 for $(\frac{6}{11}, \frac{2}{10}, \frac{2}{10})$ + $(\frac{2}{11}, \frac{6}{10})$ oe A1 for $\frac{24}{110}$ oe Alternative scheme for replacement B0 for $\frac{6}{11}$ or $\frac{2}{11}$ seen as the 2^{nd} probability M1 for $(\frac{6}{11} \times \frac{2}{11})$ or $(\frac{2}{11} \times \frac{6}{11})$ oe M1 for $(\frac{6}{11} \times \frac{2}{11})$ + $(\frac{2}{11} \times \frac{6}{11})$ oe A0 for $\frac{24}{121}$						
					Special Cases SC: Award B2 for $\frac{24}{121}$ or $\frac{10}{110}$ oe or $\frac{20}{110}$ oe						
					SC: Award B1 for $\frac{10}{121}$ or $\frac{20}{121}$						
11		180 - x	180 - x	2	M1 for $180 - x$ seen (eg $180 - x \div 2$)						
			Or $90 - \frac{x}{2}$		A1 correct expression						
12	(a)		2	1	D1 for 2 (cocont +2 but not -2 clone)						
12	(a)		3	1	B1 for 3 (accept ± 3 , but not -3 alone)						
	(b)		$\frac{1}{2}$	1	B1 for $\frac{1}{2}$ (= 0.5)						
	(c)		4	1	B1 cao						
	(d)		6	3	M1 for using $8 = 2^3$						
					M1 for deriving a correct equation in m						
					A1 cao						

QuestionWorkingAnswerMarkNot13Boys GirlsComparison of data4B1 for correct median for B1 for any correct range of C1 for a correct comparison C1 ft for a correct comparison	girls or boys or IQR on of the medians
Girls of data Median: 115 112 Of data B1 for any correct range of C1 for a correct comparison C1 ft	or IQR on of the medians
Median: 115 112 B1 for any correct range of C1 for a correct comparison C1 ft	on of the medians
112 C1 for a correct compariso	
C1 ft for a correct compar	ison of the ranges or
Range: 41 33 IQRs	
IQR: 17 9 For the award of both C m comparisons made must b question and all figures us correct.	e in the context of the
OR	
B2 for an accurately draw superimposed)	n boxplot (
C1 for a correct comparison	on of the medians
C1 for a correct comparison	on of the ranges or IQRs
For the award of both C m comparisons made must b question	
14 (a) 820 000 1 B1 cao	
(b) 3.76×10^{-4} 1 B1 cao	
(c) 5×10^8 $2 M1 \text{ for } 2.3 \div 4.6 \times 10^{12} - 0.5 \times 10^9$	³ oe or 500 000 000 or
A1 cao (accept 5.0×10^8	
	\overrightarrow{BD}
$\boxed{ M1 \text{ (indep) for } \overrightarrow{CO} + \overrightarrow{OB} = }$	$=$ $ \mathbf{c}$ $+$ \mathbf{b}
or $\overrightarrow{BA} = -\mathbf{b} + 3\mathbf{c}$	
M1 for $-\mathbf{c} + \mathbf{b} + \frac{1}{4}(-\mathbf{b} +$	- 3 c)
A1 for $\frac{3\mathbf{b}-\mathbf{c}}{4}$	
OR	
$M1 \text{ for } \overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$	
M1 (indep) for $\overrightarrow{CA} = 2\mathbf{c}$ or	$\overrightarrow{AB} = -3\mathbf{c} + \mathbf{b}$
M1 for $2\mathbf{c} + \frac{3}{4}(-3\mathbf{c} + \mathbf{b})$	
A1 for $\frac{3\mathbf{b}-\mathbf{c}}{4}$	
16 (a) 1 – 0.3 0.7 1 B1 0.7 oe	
(b) 0.3 + 0.5 0.8 1 B1 0.8 oe	

1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0QuestionWorkingAnswerMarkNotes(c) $0.2 \times 0.4 = 0.08$ Not2M1 for 0.2×0.4 (= 0.08) $0.08 \neq 0.06$ independent with reasonC1 for 0.08 and stating events not ind with reason17 $\frac{(2x-1)(x+5)}{(2x-1)(3x-1)}$ $\frac{x+5}{3x-1}$ 3M1 for factorizing the numerator corrown of the denominator contains a semi-circle or a	rectly orrectly gram)
	rectly orrectly gram)
with reason $ \frac{(2x-1)(x+5)}{(2x-1)(3x-1)} = \frac{x+5}{3x-1} $ M1 for factorizing the numerator correct position of the diagram $ \frac{ACB = 90^{\circ} \text{ angle in a semi circle}}{CBD = 180 - } $ With reason $ \frac{x+5}{3x-1} = 3 $ M1 for factorizing the denominator condition of the diagram of the	rectly orrectly gram)
17 $\frac{(2x-1)(x+5)}{(2x-1)(3x-1)}$ $\frac{x+5}{3x-1}$ 3 M1 for factorizing the numerator correct M1 for factorizing the denominator contains a semi-circle or $ACB = 90^{\circ}$ angle in a semi-circle $CBD = 180 - 45$ 3 M1 for factorizing the numerator correct position diagram	orrectly gram)
A1 for $\frac{x+5}{3x-1}$ A2B = 90° angle in a semi circle $CBD = 180 - $ A1 for $\frac{x+5}{3x-1}$ B1 $ACB = 90$ (could be on the diagonal diagram	orrectly gram)
A1 for $\frac{x+5}{3x-1}$ A2B = 90° angle in a semi circle $CBD = 180 - $ A1 for $\frac{x+5}{3x-1}$ B1 $ACB = 90$ (could be on the diagonal diagram	gram)
18 $ACB = 90^{\circ}$ angle in a semi circle $CBD = 180 -$ 454B1 $ACB = 90$ (could be on the diagonal or 45 seen in a correct position diagram	,
18 $ACB = 90^{\circ}$ angle in a semi circle $CBD = 180 -$ 454B1 $ACB = 90$ (could be on the diagonal or 45 seen in a correct position diagram	,
in a semi circle $CBD = 180 -$ or 45 seen in a correct positio diagram	,
CBD = 180 - diagram	on on the
CBD = 180 - diagram	
ACD as interior	1
angles add to B1 answer of 45	
180° B1 angle in a semicircle = 90	
$CBD = 90^{\circ}$ B1 base angles <u>isosceles</u> triangle ar	re equal
DCB = CDB = or <u>alternate angles</u> are equal	
$(180^{\circ} - 90^{\circ}) \div 2$	
base angles of an isosceles triangles	
D, C, B, A 3 B3 all correct	
(B2 2 or 3 correct)	
(B1 1 correct)	
20 $3-\sqrt{2}+3\sqrt{2}$ $1+2\sqrt{2}$ 2 M1 for 4 terms correct ignoring signs	or 3 out of
$-\sqrt{2}\sqrt{2}$ no more than 4 terms correct	
A1 cao	
21 (a) $(a+1)^2 = a^2 + 2a + 1$ Correctly 2 M1 for $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a$	+ <i>a</i> + 1
$\Rightarrow a^2 + 1$ shown (Expansion must be correct but may not be correct	
OR simplified)	
Pick any non-zero value of a and A1 for statement that $a^2 + 2a + 1 \neq a^2$ they are different)	$^{2}+1$ (eg.
show that LHS \neq OR	
RHS M1 for correct substitution of any inte	eger into
OR both expressions eg. $(2+1)^2$ and 2^2	
$(a+1)^2 = a^2 + 2a + 1$ A1 for correct evaluation of both exp	
Solves statement that they are not equal (eg. 1)	they are
$a^2 + 2a + 1$	
$\begin{vmatrix} a^2 + 2a + 1 \\ = a^2 + 1 \text{ to get } a = \end{vmatrix}$	

	1MA1 Practice pa	pers Set 6: Pa	per 1H (R	Regular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
	0 and indicates a contradiction			M1 $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ A1 Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction
(b)	$\begin{vmatrix} a^2 + 2a + 1 + b^2 + 2b \\ But \ a^2 + b^2 = c^2 \end{vmatrix}$	+1 = AG + 2c +	1 3	M1 use of Pythagoras in either triangle – one of $a^2 + b^2 = c^2$ or $(a + 1)^2 + (b + 1)^2 = (c + 1)^2$
	So $2a+2b+1=2c$			A1 $a^2 + 2a + 1 + b^2 + 2b + 1 = c^2 + 2c + 1$ and $a^2 + b^2 = c^2$
(c)	LHS is odd, RHS is even	Explanation	1	A1 $2a+2b+1=2c$ B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe

GCSE

Mathematics Practice Tests: Set 6

Paper 2H (Calculator)

Time: 1 hour 30 minutes

You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

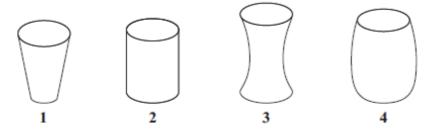
Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

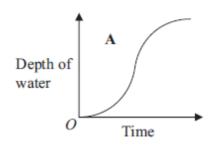
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

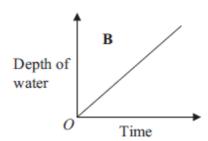
Answer ALL questions.

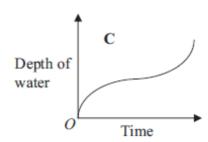

Write your answers in the spaces provided.

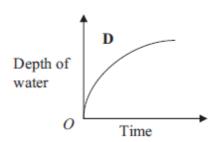
You must write down all the stages in your working.

•••	points
	points
Work out the number of points the team scored in the seventh game.	
The rugby team played one more game. The mean score for all seven games is 16	
A rugby team played six games. The mean score for the six games is 14.5	
	(Total 4 marks)
	cn
Find the greatest possible width of the rectangle.	
The perimeter of the rectangle is less than 200 cm.	
The length of the rectangle is 9 cm longer than its width.	
The width of a rectangle is a whole number of centimetres.	
The saidth of a material is a sale la manufacture of a satisfactor.	


3. Here are four containers.


Water is poured into each container at a constant rate.




Here are four graphs.

The graphs show how the depth of the water in each container changes with time.

Match each graph with the correct container.

A and			
-------	--	--	--

(Total 2 marks)

4. The diagram shows the positions of three turbines A, B and C.

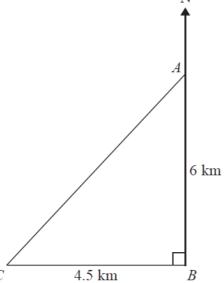


Diagram **NOT** accurately drawn

A is 6 km due north of turbine *B*. *C* is 4.5 km due west of turbine *B*.

(a) Calculate the distance AC.

 l	cm
	(3)

(b) Calculate the bearing of C from A. Give your answer correct to the nearest degree.

																																									C
••	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

(4)

(Total 7 marks)

5. The diagram shows a prism.

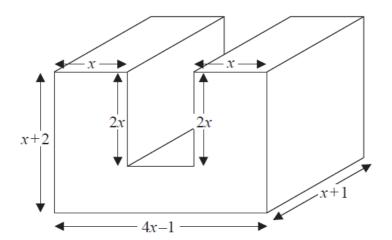


Diagram **NOT** accurately drawn

All measurements are in centimetres.

All corners are right angles.

Find an expression, in terms of x, for the volume, in cm³, of the prism.

You must show your working.

Give your answer in its simplest form.

(Total 4 mark	

6. The diagram shows a triangle *DEF* inside a rectangle *ABCD*.

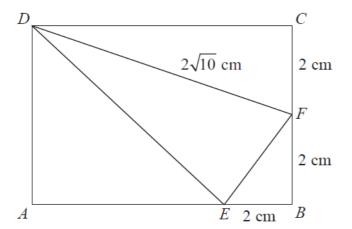


Diagram **NOT** accurately drawn

Show that the area of triangle *DEF* is 8 cm². You must show all your working.

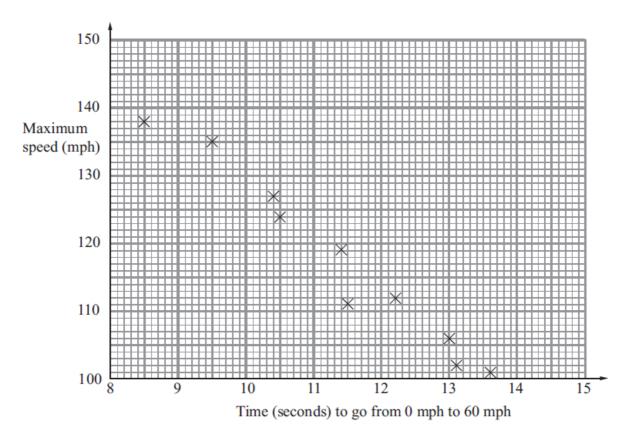
7. Jarek uses the formula

Area =
$$\frac{1}{2}ab\sin C$$

to work out the area of a triangle.

For this triangle,

a = 7.8 cm correct to the nearest mm.


b = 5.2 cm correct to the nearest mm.

 $C = 63^{\circ}$ correct to the nearest degree.

Calculate the lower bound for the area of the triangle.

cn	n^2
(Total 3 marks	

8. The scatter graph shows some information about 10 cars. It shows the time, in seconds, it takes each car to go from 0 mph to 60 mph. For each car, it also shows the maximum speed, in mph.

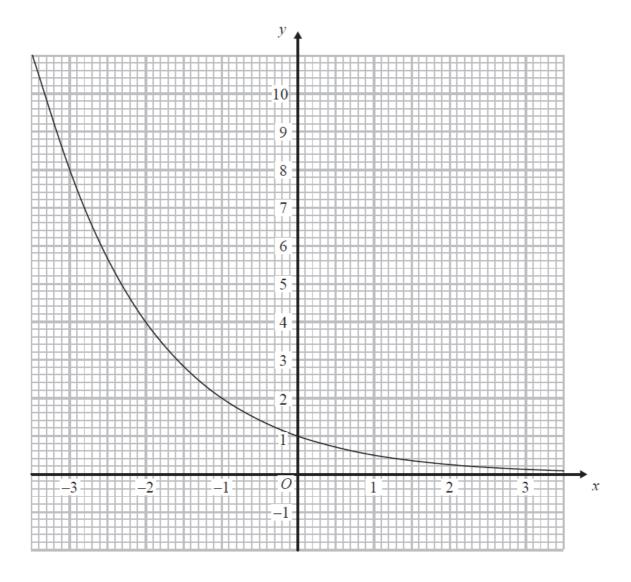
(a) What type of correlation does this scatter graph show?

.....(1)

The time a car takes to go from 0 mph to 60 mph is 11 seconds.

(b) Estimate the maximum speed for this car.

..... mph


(2)

Alex buys 4 cups of coffee and 3 cups of tea. He pays a total of £6.95
Ben buys 5 cups of coffee and 2 cups of tea. He pays a total of £7.20
Work out the cost of each cup of coffee and the cost of each cup of tea.
Cup of coffee
Cup of tea
(Total 5 marks)

9.

Alex and Ben go to a cafe with some friends.

10.

The graph of $y = k^x$, where k is a positive constant, is shown above.

Find the value of k.

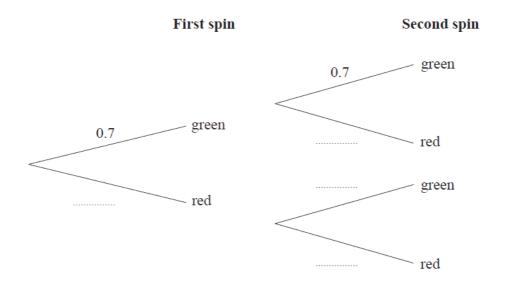
<i>k</i> =	
	(Total 2 marks)

11. In the USA, Sam pays 20.88 US Dollars for 6 US gallons of petrol. In Russia, Leon pays 800 Roubles for 25.58 litres of petrol.

Use the information in the table to compare the prices of petrol in the two countries.

1 US gallon = 3.79 litres

1 Euro = 40.63 Roubles


1 US Dollar = 0.77 Euros

12. Louise makes a spinner.

The spinner can land on green or on red. The probability that the spinner will land on green is 0.7

Louise spins the spinner twice.

(a) Complete the probability tree diagram.

(b) Work out the probability that the spinner lands on two different colours.

.....

(3)

(2)

13. A trapezium *ABCD* has an area of $5\sqrt{6}$ cm².

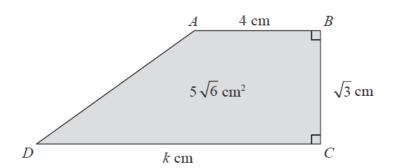


Diagram **NOT** accurately drawn

AB = 4 cm.

 $BC = \sqrt{3}$ cm.

DC = k cm.

Calculate the value of k, giving your answer in the form $a\sqrt{b}-c$, where a, b and c are positive integers. Show each step in your working.

 $k = \dots$

14. The diagram shows a large tin of pet food in the shape of a cylinder.

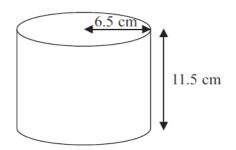


Diagram **NOT** accurately drawn

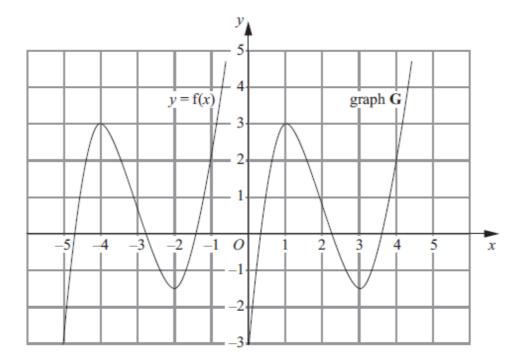
The large tin has a radius of 6.5 cm and a height of 11.5 cm.

A pet food company wants to make a new size of tin.

The new tin will have a radius of 5.8 cm. It will have the same volume as the large tin.

Calculate the height of the new tin. Give your answer correct to one decimal place.

cm


15. Prove that, for all positive values of n,

$$\frac{(n+2)^2 - (n+1)^2}{2n^2 + 3n} = \frac{1}{n}$$

(Total 4 marks)

16. Make *r* the subject of the formula $p = \frac{2r+5}{r-3}$

17. The graph of y = f(x) is shown on the grid.

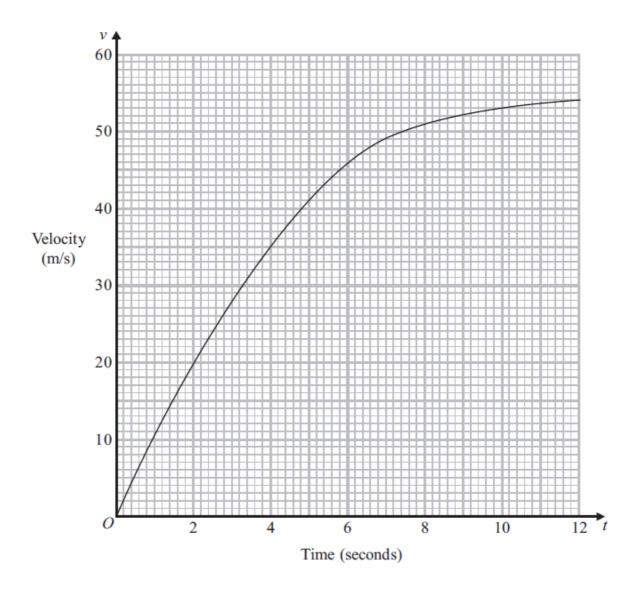
The graph **G** is a translation of the graph of y = f(x).

(a) Write down, in terms of f, the equation of graph **G**.

The graph of y = f(x) has a maximum point at (-4, 3).

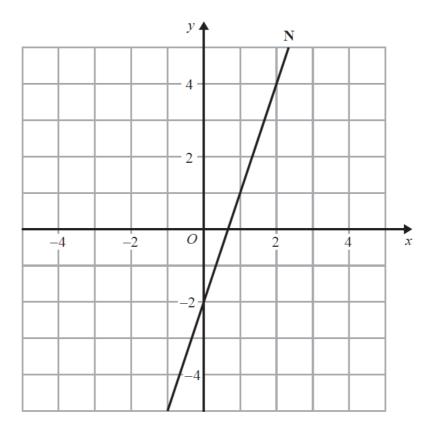
(b) Write down the coordinates of the maximum point of the graph of y = f(-x).

(.....)


(2)

18. A parachutist jumps out of a plane.

This graph shows information about the velocity, v m/s, of the parachutist t seconds after he jumped.


(a) Work out an estimate for the acceleration of the parachutist when t = 8

..... m/s²
(3)

(b) Work out an estimate for the distance the parachutist falls in the first 6 seconds.
(Total 6 man
<i>S</i> is inversely proportional to the cube of <i>t</i> . When $t = 4$, $S = \frac{1}{2}$
Find the value of <i>S</i> when $t = 8$

20. The line N is drawn below.

Find an equation of the line perpendicular to line N that passes through the point (0, 1).

(Total 3 marks)

The coordinates of A are $(2, 5)$ The coordinates of B are $(4, p)$ The coordinates of C are $(q, 17)$	
Given that $AC = 4AB$, find the values of p and q .	
	n –
	<i>p</i> =
	(Total 3 marks)
	TOTAL FOR PAPER IS 80 MARKS

The points A, B and C lie in order on a straight line.

21.

		1MA1 Practice pap	pers Set 6: Pa	aper 2H (Regular) mark scheme – Version 1.0
	stion	Working	Answer	Mark	Notes
1		2x + 2(x + 9) < 200 $2x + 2x + 18 < 200$ $4x + 18 < 200$	45	4	B1 for $x + 9$ oe seen (it could just be on a diagram) or any rectangle with length 9 cm greater than width
		4x + 18 < 200 4x < 182			M1 for $2x + 2(x + 9)$ oe
					A1 for 45.5
		x < 45.5 OR			B1 for answer of 45
		$200 \div 4 = 50$			OR
		$9 + 9 \div 4 = 4.5$			M1 for 200 ÷ 4 (=50)
		50 - 4.5 = 45.5			M1 for $(9+9) \div 4$ (=4.5)
		OR			A1 for 45.5
		200 - 18 = 182			B1 for answer of 45
		$182 \div 4 = 45.5$			
2		$16 \times 7 = 112$	25	2	M1 for 6×14.5 (= 87) or 7×16 (=112) or 6×1.5
		112 – 87			$(= 9) \text{ or } 7 \times 1.5 (= 10.5)$
					A1 for 25
3			A and 3	2	B2 for all 4 correct
			B and 2		(D15 2)
			C and 4		(B1 for 2 correct)
	()		D and 1	2	M15 452 (24 5 625)
4	(a)		7.5	3	M1 for $4.5^2 + 6^2$ (=5 6.25)
					M1 for $\sqrt{56.25}$ or $\sqrt{(4.5^2 + 6^2)}$
					A1 for 7.5
	(b)		217	4	M1 for use of appropriate trig ratio eg tan $CAB = \frac{4.5}{6}$ (= 0.75),
					$\sin CAB = \frac{4.5}{"7.5"} \ (=0.6), \cos CAB = \frac{6}{"7.5"} \ (=0.8)$
					M1 for inverse trig shown correctly
					e.g. $CAB = \tan^{-1} \frac{4.5}{6} (= 0.75),$
					$CAB = \sin^{-1} \frac{4.5}{"7.5"} (= 0.6), CAB = \cos^{-1} \frac{6}{"7.5"} (= 0.8)$
					= 0.8) A1 for 36.8 to 37 (or 53 to 53.2 if identified as <i>ACB</i>)

Questi	ion Working			Regular) mark scheme – Version 1.0
	11011	Answer	Mark	Notes
				B1ft for bearing 180 + "36.8" if "36.8" is not 40–50
5		$9x^2 + 7x - 2$	4	M1 for finding an expression for a missing length eg $4x - 1 - x - x$ (=2 $x - 1$) or $x + 2 - 2x$ (= $x - 2$)
				M1 for a correct expression for one area from the cross-section, eg. $x \times 2x$ or $(4x-1)(x+2-2x)$ or for one volume of cuboid(s), eg. $x \times 2x \times (x+1)$
				M1 for a complete method to find the volume
				A1 for $9x^2 + 7x - 2$ or $(9x - 2)(x + 1)$ oe
6		8	4	M1 for $(2\sqrt{10})^2 - 2^2 (= 36)$
				A1 for $(CD =) 6$
				M1 (dep on M1) for '6' × 4 – $\frac{1}{2}$ × '6' × 2 – $\frac{1}{2}$ × 2
				$\times 2 - \frac{1}{2} \times (6^{\circ} - 2) \times 4$
				C1 for area of 8 from fully correct working
7		17.7(014	3	B1 for 7.75 or 7.85 or 5.15 or 5.25 or 62.5 or 63.5
)		M1 for $\frac{1}{2} \times 7.75 \times 5.15 \times \sin 62.5$
				A1 for 17.7(0140994)
8 (8	a)	Negative	1	B1 cao
(1	b)	117–123	2	M1 for a line of best fit drawn between (9, 130) &
				(9, 140) and between (13, 100) & (13,110) inc
				A1 for 117 – 123 inclusive
9	4x + 3y = 695	Coffee £1.1(0)	5	M1 for attempt to use variables for cost of cup of tea and cost of a cup of coffee.
	5x + 2y = 720	Tea 85p		A1 for correct equations : $4x + 3y = 695$ and $5x + 2y$
	8x + 6y = 1390			= 720 oe
	15x + 6y = 2160			M1 for correct process to eliminate either <i>x</i> or <i>y</i> (condone one arithmetic error) could be by multiplication of both equations and then
	7x = 770			

		1MA1 Practice pag	pers Set 6: Pa	aper 2H (Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
		x = 110 $y = 85$			addition/subtraction or by manipulation of one equation and then substitution into second equation M1 (dep) for substituting found value into either equation A1 for correct answers with units
10		$2 = k^{-1}$	1/2	2	M1 for reading off and substituting a pair of values from the graph (excluding 0, 1) into the equation, eg $x = -1$, $y = 2$ A1 for ½ oe
11		US 1 gal costs 20.88÷6=\$3.48 1 litre costs \$3.48÷3.79 = \$0.918 I litre costs 0.918× 0.77 Euros = 0.707Euros Russia 1 litre costs 800 ÷25.58 = 31.27 Roubles 1 litre costs 31.27÷40.63 Euros = 0.769 Euros Or 25.58 litres = 25.58 ÷ 3.79 = 6.749 US gallons	Correct conclusion based on correct calculation s	5	M1 for a conversion, gallons to litres or litres to gallons M1 for a conversion, roubles to US Dollars or US Dollars to roubles or convert both to Euros M1 for a conversion to common units and common currency A1 for two correct answers in the same currency and for the same unit C1 (dep on at least M1) for correct conclusion ft candidate's figures. eg M1 1 US gal costs 20.88÷6 (=3.48) M1 1 litre costs 3.48 ÷3.79× 0.77 (=0.707) M1 1 litre in Russia costs 800 ÷25.58 ÷40.63 (=0.769) A1 for 0.707 and 0.769 C1 (dep on at least M1) for correct conclusion ft candidate's figures.

		1MA1 Practice par	oers Set 6: Pa	aper 2H (l	Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
		800 roubles = (800÷40.63)÷0.77 = \$25.571			
		Cost in \$ of 1 US gallon in Russia is 25.571÷6.749 = \$3.788			
		Cost in \$ of 1 US gallon in US = $20.88 \div 6 = 3.48			
		Cost per litre for US petrol \$0.918 or €0.707 or 28.7 rub			
		Cost per gallon for US petrol			
		\$3.48 or €2.68 or 109 rub			
		Cost per litre for Russian petrol			
		31.27 rub or €0.770 or \$1			
		Cost per gallon for Russian petrol			
		118 rub or €2.92 or \$3.79			
12	(a)		0.3	2	B1 for 0.3 as first spin oe
			0.3, 0.7, 0.3		B1 for 0.3, 0.7, 0.3 in correct positions for second spin oe
	(b)		0.42	3	M1 for '0.3' \times '0.7' or 0.7 \times '0.3' (=0.21)
					M1 for '0.3' \times '0.7 + 0.7 \times '0.3
					(OR M2 for $1 - 0.7^2 - 0.3^2$)
					A1 for 0.42 oe
10		(1)	(1) 10 2		
13		$ (A =) 0.5 \times (4 + k) $ $ \times \sqrt{3} $	$(k =) 10\sqrt{2} - 4$	3	M1 $4\sqrt{3} + 0.5(k-4) \times \sqrt{3}$ oe
		$(=5\sqrt{6})$ oe	•		M1 correctly isolating k
		(- 3 10) 00			A1 Accept $2(5\sqrt{2}-2)$ but don't accept $10\sqrt{2}-4$

		1MA1 Practice pap	oers Set 6: P	aper 2H (Regular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
		$k+4=(10\sqrt{6})/\sqrt{3}$			followed by $5\sqrt{2} - 2$
		$(k=) 2 \times (5\sqrt{6})/\sqrt{3}$ -4			
		or $(k =) (5\sqrt{6} - \sqrt{3})/(0.5\sqrt{3})$ oe			
14		, , , , ,	14.4	3	M1 for $\pi \times 6.5^2 \times 11.5$ (= 1526.42)
					, , , , , , , , , , , , , , , , , , ,
					M1 (dep) for $\frac{'1526.42'}{\pi \times 5.8^2}$
					A1 for 14.4 - 14.5
					OR
					M1 for $\frac{5.8}{6.5}$ or $\frac{6.5}{5.8}$ or $0.89(23)$ or
					1.12(06896)
					M1 for 11.5 ÷ $\left(\frac{5.8}{6.5}\right)^2$ or 11.5 ÷ $\left(\frac{6.5}{5.8}\right)^2$
					A1 for 14.4 – 14.5
15		$(n^2 + 4n + 4) - (n^2$	Proof	4	M1 for correct method to expand $(n + 2)^2$ or $(n + 1)^2$
		+2n +1)			M1 for correct simplification of numerator
		$\frac{2n+3}{2n^2+3n}$			M1 for factorisation of $2n^2 + 3n$ or for clearing the fractions on both sides correctly
		2n+3			C1 for complete and correct proof
		n(2n +3)			OR
					M1 for $\{(n+2)-(n+1)\}\{(n+2)+(n+1)\}$
					M1 for $1 \times (2n+3)$
					M1 for factorisation of $2n^2 + 3n$ or for clearing the fractions on both sides correctly
					C1 for complete and correct proof
					OR
					M1 for $n\{(n+2)^2 - (n+1)^2\} = (2n^2 + 3n) \times 1$
					M1 for $n(n+2)^2 - n(n+1)^2$ or for correct expansion of
					$(n+2)^2 - (n+1)^2$

	1MA1 Practice papers Set 6: Paper 2H (Regular) mark scheme – Version 1.0									
Que	stion	Working	Answer	Mark	Notes					
					M1 for correct expansion of					
					$n\{(n+2)^2-(n+1)^2\}$					
					C1 for complete and correct proof (must include statement recognising the equality of LHS and					
					RHS)					
16		p(r-3) = 2r+5	$\frac{3p+5}{p-2}$	4	M1 for multiplying both sides by $r - 3$					
		pr - 3p = 2r + 5 $ pr - 2r = 3p + 5$	p-2		eg $p(r-3)$ or $pr-3p$ or $pr-3$ or $p \times r - 3$					
		r(p-2) = 3p+5			M1 for isolating their two terms in r on one side of an equation to get $pr-2r$ or $2r-pr$					
					M1 (dep on M1) for correctly factorising r from ' $pr-2r$ '					
					A1 for $\frac{3p+5}{p-2}$ or $\frac{-3p-5}{2-p}$ oe					
17	(a)		y - f(x - 5)	1	B1 cao					
	(b)		(4, 3)	2	B2 cao					
					(B1 for one coord. correct (in correct position) or (3,4).)					
18	(a)		1.5	3	B1 for tangent drawn at $t = 8$					
					M1 for height ÷ base for a triangle with the tangent as					
					hypotenuse					
					A1 for 1.25 to 1.75					
	(b)		156	3	M1 for attempting to find area under curve					
					M1 for correct method to find the area under the curve					
					between $t = 0$ and $t = 6$ (at least 3 areas)					
					A1 for 150 – 160					
19			$\frac{1}{16}$	4	M1 for $S \propto \frac{1}{t^3}$ or $S = \frac{k}{t^3}$					
					M1 for $\frac{1}{2} = \frac{k}{4^3}$ oe or $S = \frac{32}{t^3}$					
					M1 $S = \frac{32}{8^3}$ oe					

	1MA1 Practice papers Set 6: Paper 2H (Regular) mark scheme – Version 1.0									
Que	stion	Working	Answer Mark		Notes					
					A1 for $\frac{1}{16}$ oe					
20		Gradient of $N = 3$ Gradient of perpendicular to line $N = -\frac{1}{3}$	$y = -\frac{1}{3}x + 1$	3	M1 for complete method to find gradient of line N or for drawing a perpendicular line M1 for method to find the gradient of a perpendicular line A1 $y = -\frac{1}{3}x + 1$ oe					
21			p = 8, q = 10	3	M1 for finding the difference between the x or y coordinates eg $4-2$ (= 2) or $17-5$ (= 12) M1 for a complete method to find the values of p or q A1 cao					

GCSE Mathematics

Practice Tests: Set 6

Paper 3H (Calculator)

Time: 1 hour 30 minutes

You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

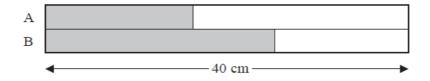
- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.



Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1. Here is a rectangle.

The rectangle has been divided into two strips, A and B. The strips have the same width.

$$\frac{2}{5}$$
 of strip A is shaded.

$$\frac{5}{8}$$
 of strip B is shaded.

The length of the rectangle is 40 cm.

What fraction of the rectangle is **not** shaded?

(Total 4 marks)

2. Make w the subject of the formula $P = \frac{w-3}{2}$

.....

	25 miles		25 miles	
0-		-0-		—о
\boldsymbol{A}		B		C

A, B and C are 3 service stations on a motorway.

AB = 25 miles BC = 25 miles

Aysha drives along the motorway from *A* to *C*.

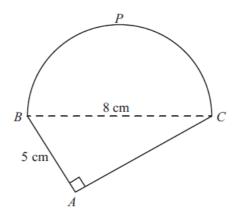
Aysha drives at an average speed of 50 mph from A to B. She drives at an average speed of 60 mph from B to C.

Work out the difference in the time Aysha takes to drive from A to B and the time Aysha takes to drive from B to C.

Give your answer in minutes.

minutes
(Total 3 marks)

4.	Solve the simultaneous equations


4x + 3y = -7

3x - 4y = 26

(Total 4 mar	ks)
y =	• • • •
<i>x</i> =	••••

	(Total 5 marks)
	(2)
(c) Work out the value of m	
(b) Work out the value of n.	
At the end of the n years he had £3445.51 in the savings account.	
Jaspir invested £2400 for n years in a savings account. He was paid 7.5% per annum compound interest.	(0)
	£(3)
(a) How much did Toby have in his savings account after 2 years?	

Here is a shape. **6.**

BPC is a semicircle.

BAC is a right-angled triangle.

BC = 8 cm.

AB = 5 cm.

Work out the perimeter of the shape. Give your answer correct to 3 significant figures.

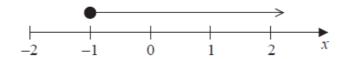
	. cn	1
(T)		

7. The diagram shows a trapezium.

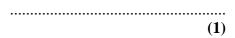


Diagram **NOT** accurately drawn

All measurements on the diagram are in centimetres.


The area of the trapezium is 119 cm^2

(i) Show that $2x^2 - x - 120 = 0$


(ii) Find the value of *x*. Show your working clearly.

x =

8. Here is a number line.

(a) Write down the inequality shown on the number line.

p is an integer.

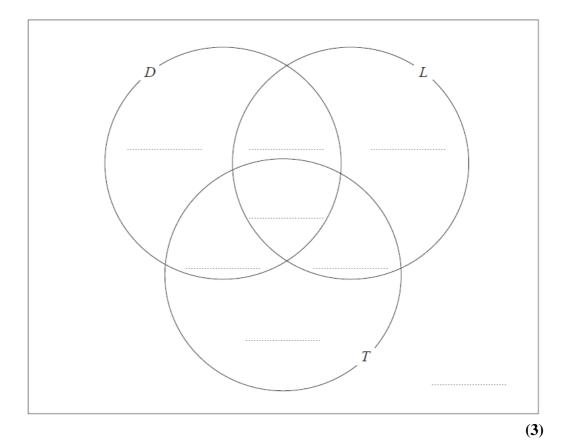
$$-5$$

(b) Write down all the possible values of p.

(c) Solve 5y - 2 < 18

(2)

9.	There are 9 counters in a bag. There is a number on each counter.
	$\begin{array}{c c} \hline 1 & \hline 1 & \hline 2 & \hline 2 & \hline 2 & \hline 3 & \hline \end{array}$
	Kal takes at random 3 counters from the bag.
	He adds together the numbers on the 3 counters to get his Total.
	Work out the probability that his Total is 6.
	(Total 5 marks)


10.	The highest common factor (HCF) of 140 and x is 20.
	The lowest common multiple (LCM) of 140 and x is 420.
	Find the value of x .
	<i>x</i> =
	(Total 2 marks)
11.	A number is decreased by 15%. The result is 323
	What was the original number?
	(Total 3 marks)

12. Each student in a group of 32 students was asked the following question.

"Do you have a desktop computer (D), a laptop (L) or a tablet (T)?"

Their answers showed that

- 19 students have a desktop computer
- 17 students have a laptop
- 16 students have a tablet
 - 9 students have both a desktop computer and a laptop
- 11 students have both a desktop computer and a tablet
- 7 students have both a laptop and a tablet
- 5 students have all three.
- (a) Using this information, complete the Venn diagram to show the number of students in each appropriate subset.

One of the students with both a desktop computer and a laptop is chosen at random.

(b) Find the probability that this student also has a tablet.

(1)				
(Total 4 marks)				

13.	The	fund	ction	f	is	defined	as
IJ.	1110	IUII	Juon	1	10	ucinicu	as

$$f(x) = \frac{x - 6}{2}$$

(a) Find f(8).

(1)

(b) Express the inverse function f^{-1} in the form $f^{-1}(x) = ...$

 $f^{-1}(x) = \dots$ (2)

The function g is defined as

$$g(x) = \sqrt{x-4}$$

(c) Express the function gf in the form gf(x) = ... Give your answer as simply as possible.

$$gf(x) =$$

(2)

14. The diagram shows a prism.

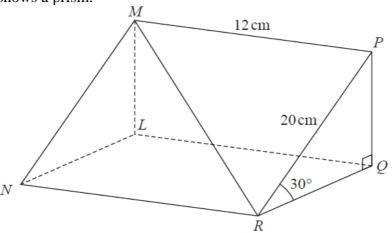
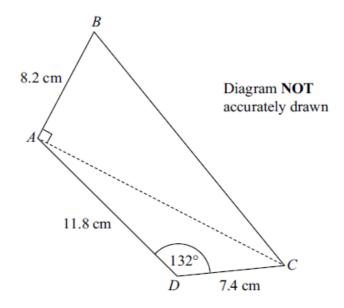


Diagram **NOT** accurately drawn

Triangle PQR is a cross section of the prism.

PR = 20 cm

MP = 12 cm


Angle $PRQ = 30^{\circ}$

Angle $\overrightarrow{PQR} = 90^{\circ}$

Calculate the size of the angle that the line MR makes with the plane RQLN. Give your answer correct to 1 decimal place.

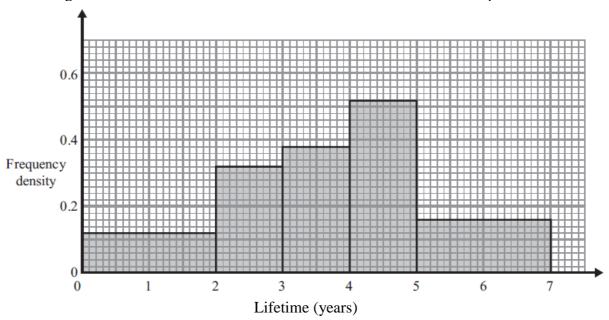
.....0

15.	A scientist is studying some rabbits. The rabbits have a disease that kills the rabbits.
	A population of 160 of these rabbits was reduced to 90 rabbits in two days. The rabbit population is decreasing exponentially.
	Work out how many of the 160 rabbits will still be alive at the end of 7 days.
	(Total 5 marks)

Work out the area of the quadrilateral *ABCD*. Give your answer correct to 3 significant figures.

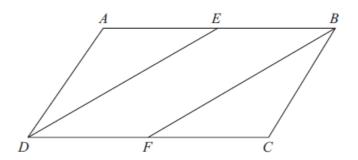
cm ²)
(Total 6 marks))

17.	$y = at^2 - 2at$
1/.	y - ai - 2ai


$$x = 2a\sqrt{t}$$

Express y in terms of x and a.

Give your answer in the form $y = \frac{x^p}{ma^3} - \frac{x^q}{na}$, where p, q, m and n are integers.


.....

18. The histogram shows information about the lifetime of some electrical components.

Work out the proportion of the components with a lifetime of between 1 and 6 years.

.....

ABCD is a parallelogram.E is the midpoint of AB.F is the midpoint of DC.

(a) Prove that triangle AED is congruent to triangle CFB.

(3)

(b) Hence, prove that DE = FB

(1)

(Total 4 marks)

	1M	A1 Practice papers Set (6: Paper 3H (l	Regular) r	mark scheme – Version 1.0
Ques		Working	Answer	Mark	Notes
1			$\frac{39}{80}$	4	M1 for a correct method to find $\frac{2}{5}$ of 40;
			80		eg. $40 \div 5 \times 2 \ (= 16)$
					or for a correct method to find $\frac{5}{8}$ of 40; eg.
					$40 \div 8 \times 5 \ (= 25)$
					M1 for a correct method to find $\frac{2}{5}$ of 40
					and $\frac{5}{8}$ of 40
					M1 (dep on M1) for $80 - "16" - "25"$ (= 39) or $\frac{"16" + "25"}{80}$ (= $\frac{41}{80}$)
					A1 $\frac{39}{80}$ oe
					OR
					M1 for $1 - \frac{2}{5}$ (= $\frac{3}{5}$) and $1 - \frac{5}{8}$ (= $\frac{3}{8}$)
					M1 for a correct method to find $\frac{3}{5}$ of 40;
					eg. $40 \div 5 \times 3$ (= 24) or for a correct method to find $\frac{3}{8}$ of 40; eg.
					$40 \div 8 \times 3 \ (= 15)$
					M1 (dep on M1) for "24" + "15" (= 39)
					A1 $\frac{39}{80}$ oe
2			w = 2P + 3	2	M1 for a clear intention to multiply both
					sides by 2 or add $\frac{3}{2}$ to both sides as a first
					step A1 for $w = 2P + 3$ oe
3		$25 \div 50 = 0.5 \text{ h} = 30$ min	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or 30 (min) or
		$25 \div 60 = 0.416h = 25$			0.5(h)
		min			or $25 \div 60$ or $\frac{60}{60} \times 25$ or 25 (min) or
					0.41(6)(h)
					M1(dep) '0.5' - '0.41(6)' or '30' - '25' A1 cao
					OR
					M1 for 60 ÷ 25 (= 2.4) and 60 ÷ "2.4" or 50 ÷ 25 (= 2) and 60 ÷ "2" M1(dep) for '30' – '25'
					A1 cao
4			2	4	M1 6
4		12x + 9y = -21	x = 2	4	M1 for correct process to eliminate either
		$\frac{12x - 16y = 104}{25y = -125}$	y = -5		x or y (condone one arithmetic error)
<u> </u>	<u> </u>		<u> </u>	<u> </u>	1

	1M	A1 Practice papers Set (6: Paper 3H (Regular) ı	mark scheme – Version 1.0
Ques	tion	Working	Answer	Mark	Notes
Ques	COIL	$y = -5$ $4x + 3 \times -5 = -7$ OR $16x + 12y = -28$ $9x - 12y = 78$ $25x = 50$ $x = 2$ $4 \times 2 + 3y = -7$	Allswei	IVIAIK	A1 for either $x = 2$ or $y = -5$ M1 (dep on 1 st M1) for correct substitution of their found value or (indep) for correct process to eliminate the other variable (condone one arithmetic error) A1 cao for both $x = 2$ and $y = -5$ SC: B1 for $x = 2$ or $y = -5$ if M0 scored
5	(a)	4500×1.04 ²	4867.20	3	M1 for 4500 × 1.04 or for 4500 + 0.04 × 4500 or for 4680 or 180 or 360 or 4860 M1 (dep) '4680' × 1.04 or for '4680' + 0.04 × '4680' A1 for 4867.2(0) cao (If correct answer seen then ignore any extra years) Alternative method M2 for 4500×1.04 ² or 4500 × 1.04 ³ A1 for 4867.2(0) cao [SC: 367.2(0) seen B2]
	(b)	2400×1.075 ⁿ 2580 2773.5 2981.5125 3205.12 3445.51	5	2	M1 for an attempt to evaluate 2400×1.075^n for at least one value of n (not equal to 1) or $3445.51 \div 1.075^n$ ($n \ge 2$) or $\frac{3445.51}{2400}$ (=1.4356) and 1.075^n evaluated, $n \ge 2$ A1 for 5 cao
6		$2 \times 10 \cos 70$ OR $BC^{2} = 10^{2} + 10^{2} - 2 \times 10 \times 10 \times \cos 40$ $BC = \sqrt{46.79(1)}$	6.84	4	M1 for $180 - 2 \times 70$ M1 for $\frac{10}{\sin 70} = \frac{BC}{\sin(180 - 2 \times 70)}$ M1 for $BC = \frac{\sin(180 - 2 \times 70) \times 10}{\sin 70}$ A1 for $6.84(0)$ OR M1 for $180 - 2 \times 70$ M1 for $10^2 + 10^2 - 2 \times 10 \times 10 \times \cos(180 - 2 \times 70)$ M1 for $\sqrt{46.79(1)}$

	1M	A1 Practice papers Set (6: Paper 3H (1	Regular) r	mark scheme – Version 1.0
Ques		Working	Answer	Mark	Notes
Ques 7			Answer (1) (3)) shown (120)		
		or -7.5 and 8 given as solutions		1	D1
8	(a) (b)		$x \ge -1$ $-4, -3, -2$ $y < 4$	2	B1 cao B2 for all 3 values and no extras (ignore repeats) (B1 for 2 correct values and no extras or all 3 correct values and -5) M1 for clear intention to add 2 onto each side of an inequality (or equation) or clear intention to divide all terms by 5 as a first step or $(y =)$ 4 A1 cao

Ques	A1 Practice papers Set 6 Working	6: Paper 3H (l Answer	Regular) r Mark	nark scheme – Version 1.0 Notes
Ques	Working	THISWEI	IVIAI K	
9	eg. $\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(= \frac{6}{504} = \frac{1}{84} \right)$ eg. $\frac{2}{9} \times \frac{3}{8} \times \frac{4}{7} \left(= \frac{24}{504} = \frac{1}{21} \right)$ $6 \times "\frac{24}{504}" \left(= \frac{144}{504} = \frac{6}{21} = \frac{1}{21} \right)$ $6 \times \frac{2}{9} \times \frac{3}{8} \times \frac{4}{7} + \frac{3}{9} \times \frac{2}{8} \times \frac{2}{7} = \frac{1}{21}$	$\frac{1}{2} \left(= \frac{6}{2} + \frac{1}{2} \right)$	5	M1 (probabilities from selecting 2, 2, 2) allow $\frac{3}{9} \times \frac{2}{9} \times \frac{1}{9} \left(= \frac{6}{729} \right)$ or $\frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \left(= \frac{27}{729} \right)$ M1 (probabilities from selecting 1, 2, 3) allow $\frac{2}{9} \times \frac{3}{9} \times \frac{4}{9} \left(= \frac{24}{729} \right)$ M1 (probabilities for all combinations of 1, 2, 3) allow $6 \times \frac{24}{729} \left(= \frac{144}{729} \right)$ M1 complete correct method
10	20 = 2, 2, 5 140 = 2, 2, 5, 7 420 = 2, 2, 3, 5, 7	60	2	M1 for identifying the prime factors for 2 of the 3 numbers 20,140,420 (can be implied by a factor tree, repeated division or Venn diagram) or For a complete Venn diagram for x and 140 with 20 in the intersection or $x = 20 \times 3$ or $20 \times 7 \times y = 420$ or $\frac{420}{20 \times 7}$ or

	1MA1 Practice papers Set 6: Paper 3H (Regular) mark scheme – Version 1.0							
Ques	tion	Working	Answer	Mark	Notes			
					At least the 1 st 3 multiples of 20 or $140x = 420 \times 20$ oe A1 (Allow $2 \times 2 \times 3 \times 5$)			
11			380	3	M1 for 1 – 0.15 (= 0.85) or 100 – 15 (= 85)			
					M1 for $323 \div 0.85$ oe or $323 \div 85 \times 100$ oe A1 cao			

or $2(L \cap T \cap D')$ or $6(D \cap$
$T \cap L'$
M1 for any 4 correct entries
A1 for all correct including 2 outside the circles inside the rectangle
B1 ft from incorrect diagram
B1
M1 or for a correct
flowchart including inverse
A1

14	$PQ(ML) = 20 \sin 30^{\circ} \text{ (=10) or}$ $MR = \sqrt{12^{2} + 20^{2}} = \sqrt{544} = 4\sqrt{34}$ $= 23.32)$ $LR = \sqrt{12^{2} + (RQ)^{2}} = \sqrt{12^{2} + (10\sqrt{3})^{2}} = \sqrt{444} = 2\sqrt{111} = 21.07$ $\cos MRL = \frac{10}{4\sqrt{34}} \left(\frac{ML}{MR}\right) \text{ or}$ $\cos MRL = \frac{2\sqrt{111}}{4\sqrt{34}} \left(\frac{LR}{MR}\right) \text{ or}$		5	B1 Recognition of angle LRM as required angle either drawn on diagram or from working M2 for a correct method to calculate $PQ(ML)$ & MR or MR & LR or $PQ(ML)$ & LR (NB: LR requires use of RQ = $\sqrt{20^2 - 10^2} \ or 20 \cos 30 = \sqrt{300} = 10$) Or M1 for a correct method to calculate one of the sides PQ or MR or LR M1 (Dep on M2) Use of a correct trig ratio to find angle MRL
	$\tan MRL = \frac{10}{2\sqrt{111}} \left(\frac{ML}{LR}\right)$	25.4		A1 25.38 – 25.5

		1MA1 Practice paper	rs Set 6: Pap	er 3H (Regu	llar) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
15			21 or 22	5	M1 for $160r^2 = 90$ or $\frac{90}{160}$
					M1 for $(r=) \sqrt{\frac{90}{160}}$ oe
					M1 (dep M2) for $160 \times \left(\sqrt{\frac{90}{160}}\right)^7$ oe
					A1 for 21.3
					A1 for 21 or 22
					or
					M1 for $160 \times r^2 = 90$ or $\frac{90}{160}$
					M1 for $160 \times \frac{100 - n}{100} \times \frac{100 - n}{100} = 90$
					M1 (dep M2) for 160×0.75^7
					A1 for 21.3
					A1 for 21 or 22
16		$AC^2 = 11.8^2 + 7.4^2$ $-2 \times 11.8 \times 7.4 \times$ $\cos 132$ AC = 17.63 $\frac{1}{2} \times 8.2 \times \text{``}17.63$ (= 72.28) $+\frac{1}{2} \times 11.8 \times 7.4 \times$ $\sin 132$ (= 32.445)	105	6	M1 for $AC^2 = 11.8^2 + 7.4^2 - 2 \times 11.8 \times 7.4 \times \cos 132$ M1 for correct order of operations or 310.85 A1 for $AC = 17.63$ M1 for Area of $ABC = \frac{1}{2} \times 8.2 \times \text{``}17.63\text{''}$ or Area of $ADC = \frac{1}{2} \times 11.8 \times 7.4 \times \sin 132$ M1 for $\frac{1}{2} \times 8.2 \times \text{``}17.63\text{'''} + \frac{1}{2} \times 11.8 \times 7.4 \times \sin 132$ '' A1 for an answer in the range $104.7 - 105$

	1MA1 Practice papers Set 6: Paper 3H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
17		$\sqrt{t} = \frac{x}{2a} \text{ or}$ $x^2 = (2a\sqrt{t})^2 \text{ or}$		4	M1 Correct rearrangement for \sqrt{t} or correct expression for x^2 or x^4		
		$x^{4} = (2a\sqrt{t})^{4} \text{ oe}$ $t = \left(\frac{x}{2a}\right)^{2} \text{ oe or}$			M1 Correct expressions for t or t^2 or for at^2 or $2at$ in terms of x and a		
		$t^{2} = \frac{x^{4}}{16a^{4}} \text{ oe}$ $y = a \left[\left(\frac{x}{2a} \right)^{2} \right]^{2} - 2a$	$\left(\frac{x}{2a}\right)^2$		M1 for correct substitution of t and t^2 into expression for y		
		oe	$y = \frac{x^4}{16a^3} -$	$\frac{x^2}{2a}$	A1 Fully correct answer in required form		

	1MA1 Practice papers	s Set 6: Paper	r 3H (Re	egular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
18	Area $(1 < 1 < 6)$ = $(0.12 \times 1) +$ $(0.32 \times 1) + (0.38 \times 1) +$ $(0.52 \times 1) + (0.16 \times 1)$ = 1.50 Total Area= $(0.12 \times 2) +$ $(0.32 \times 1) + (0.38 \times 1) +$ $(0.52 \times 1) + (0.16 \times 2)$ = 1.78 Proportion = $\frac{1.50}{1.78}$	0.84 or <u>75</u> 89	4	M1 for attempt to use frequency density × width e.g. 0.12×2 or 0.24 M1 for $(0.12 \times 2) + (0.32 \times 1) + (0.38 \times 1) + (0.52 \times 1) + (0.16 \times 2)$ or 1.78 seen M1 for $((0.12 \times 1) + (0.32 \times 1) + (0.38 \times 1) + (0.52 \times 1) + (0.16 \times 1))/"1.78"$ A1 for answer which rounds to 0.84 or 84% or $\frac{75}{89}$ or equivalent vulgar fraction
	1.76			OR
				M1 for attempt to use area e.g. sight of any one of 4.8, 6.4, 7.6, 10.4 or 6.4 (cm²) oe M1 for $4.8 + 6.4 + 7.6 + 10.4 + 6.4$ or 35.6 (cm²) oe seen M1 for $(2.4 + 6.4 + 7.6 + 10.4 + 3.2)$ "35.6" oe A1 for answer which rounds to 0.843 or 84.3%% or $\frac{75}{89}$ or equivalent vulgar fraction
19		congruenc	3	M1 for correct statement with correct reason
		y proved		M1 for a second correct statement with correct reason
			C1 for complete proof justifying congruency, eg SAS or AAS	
				Eg
				DAE = BCF (opposite angles of parallelogram are equal)
				AE = FC (E and F are midpoints of lines of equal length)
				AD = BC (opposite sides of parallelogram are equal)
				$AED \equiv CFB \text{ (SAS)}$
		explains	1	C1 for relevant statement using congruency
		why		Eg
		DE = FB		DE and FB are corresponding sides of congruent triangles