

AS Bridging Work Biology

Summer Holiday Bridging Work 2024 Year 11 into 12

Name:
Tutor Group

Teacher:

WELCOME TO AS-BIOLOGY

The purpose of this booklet is to give you essential information and resources for the AS Biology course. This booklet will also help you to understand and develop the skills you will need.

Please remember the following items for **EVERY** lesson – **ESSENTIAL**:

- Pens; especially purple and green (highlighters are useful too) and paper
- A file with your (well organised) notes in
- Your textbook / device

SUPPORT

We hope you enjoy learning Biology BUT sometimes even the best of students can have problems:

- Problems with work
- Problems understanding concepts
- Problems getting your head round all the theories in biology
- Problems with completing homework
- Problems in your personal life

If any of this applies to you, don't feel there's nowhere to turn – THERE IS!

ALL the staff in the Biology Department will be happy to talk through your concerns or can advise you – so don't panic or think about giving up, **HELP IS AT HAND**.

Come and find us, or e-mail – no problem is ever so big that we can't help, honest!

EXPECTATIONS

As a part of its quality approach to teaching, the Biology Department follows a common policy on the setting and marking of work. This code of practice is followed by both staff and students and is aimed to help you achieve success in Biology.

What we expect of YOU

- It is expected that your attendance will be 100% if you are absent you MUST inform your tutor (beforehand if possible). If you do miss a lesson for medical or academic reasons it is YOUR responsibility to catch up on the work that you have missed.
- You are expected to spend **<u>FIVE</u>** hours a week per subject on personal study. This time may be directed by homework set by the tutor; otherwise you will be expected to use this time to read around your subject, supplement your notes and ensure that your notes are well organised and complete
- You are expected to manage and organise your work effectively, and to be responsible for keeping your notes, files and assessment pack up to date.
- Solution of the second second

What you can expect of US

Search Assessed work will be marked and handed back within TWO weeks of the handing in date.

We will always be willing to discuss your progress and support your learning.

USEFUL WEBSITES

The following Internet resources are useful and will help with your AS Biology course:

Revision and consolidation of knowledge:

- http://www.biologymad.com/
- https://www.khanacademy.org/science/biology
- https://getrevising.co.uk/resources/level/a ib/subjects/biology

Other useful websites include:

- 1 https://snaprevise.co.uk/plans You can buy a subscription if you want
- <u>https://snabbiology.wordpress.com/</u>: A great (and free!) archive of core practicals.

^oThere are also many online journals to access, such as Nature, NCBI, Science Direct, Web of Science You are encouraged to keep an eye on the news as many reports and articles will be relevant to the materials you are studying in class.

HOW DO WE STUDY BIOLOGY AT BENTLEY WOOD?

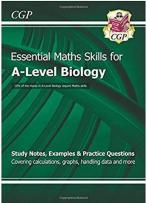
Exam board:

At Bentley Wood we study Edexcel Salters Nuffield Biology A (also known as SNAB)

https://qualifications.pearson.com/en/qualifications/edexcel-a-levels/biology-a-2015.html Contains the spec, past papers, exam dates and most importantly EXAMINERS' REPORTS which will tell you where students commonly go wrong/suggest how to improve.

Lessons:

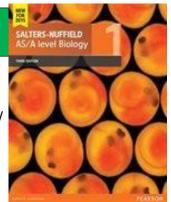
You will have six periods of Biology every week. Three lessons will be spent with one teacher learning topics 1 and 2 and three lessons will be spent with a different teacher learning topics 3 and 4. At the end of the year you will sit two exam papers, each worth 50% of your AS grade (see image below)

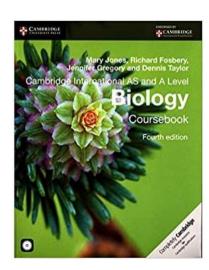

Practical work:

Your grade will be based fully on your exams, there is no coursework. However, similar to your GCSEs, you will be carrying out nine core practicals throughout the year which are compulsory. Your teachers will be stricter in assessing your practical skills and will submit a pass or a fail to the exam board at the end of the year. In your final exams you will be assessed on these practicals for example by being asked to write a method or analyse data.

PREPARATION

<u>Prep task 1.</u> Buy some good books. You must buy the first textbook but there are more you might want to invest in- the more you have the better your grade! (We do have an online PDF copy for free if you don't want a hard copy)


Compulsory: Salters-Nuffield AS/A level Biology Student Book 1 **Price:** £15 from Amazon



Recommended: CGP Essential maths skills for A-Level Biology **Price:** \pounds 7.50

Recommended: Cambridge International AS and A Level Biology **Price:** £40 from Amazon (expensive but covers both years and is

worth it if you are serious)

Prep task 2. Read the specification from the Edexcel Pearson website:

https://qualifications.pearson.com/content/dam/pdf/A%20Level/biology-a/2015/specification-and-sample-assessment-materials/9781446930908_GCE2015_AS_BioA_spec.pdf

Print off the specification teaching points (pages 17-26) and put in the front of your folder

This is how it should look:

Тор	
	pic 1: Lifestyle, Health and Risk
the diet parti (CVI deta	topic builds on students' knowledge and understanding of the functioning of circulatory system and the importance of lifestyle choices to health. The role of and other lifestyle factors in maintenance of good health is considered with cular reference to the heart and circulation and to cardiovascular disease). The structures and functions of some carbohydrates and lipids are also iled within this context. Ideas about correlation, causation and the concept of to health are covered.
relat prac hear mea vess	lents should be encouraged to carry out a range of practical experiments ed to this topic in order to develop their practical skills. In addition to the core ticals detailed below possible experiments include heart dissection to relate t structure to function, investigation of the structure blood vessels by suring the elastic recoil of arteries and veins and by examining slides of blood els, measurement of blood pressure, and investigation of the hydrolysis of ccharides.
prob subs phys bar o and two	ortunities for developing mathematical skills within this topic include calculating abilities, plotting two variables from experimental data, calculating % change, tituting numerical values into algebraic equations using appropriate units for ical quantities, constructing and interpreting frequency tables and diagrams, charts and histograms, translating information between graphical, numerical algebraic forms and using scatter diagrams to identify a correlation between variables. (Please see Appendix 5: Mathematical skills and exemplifications for ter information.)
Stud	lents should:
1.1	Understand why many animals have a heart and circulation (mass transport to overcome limitations of diffusion in meeting the requirements of organisms).
1.1 1.2	
	overcome limitations of diffusion in meeting the requirements of organisms). Understand the importance of water as a solvent in transport, including its
1.2	overcome limitations of diffusion in meeting the requirements of organisms). Understand the importance of water as a solvent in transport, including its dipole nature. Understand how the structures of blood vessels (capillaries, arteries and veins)
1.2 1.3	overcome limitations of diffusion in meeting the requirements of organisms). Understand the importance of water as a solvent in transport, including its dipole nature. Understand how the structures of blood vessels (capillaries, arteries and veins) relate to their functions. i) Know the cardiac cycle (atrial systole, ventricular systole and cardiac diastole) and relate the structure and operation of the mammalian heart,
1.2 1.3	overcome limitations of diffusion in meeting the requirements of organisms). Understand the importance of water as a solvent in transport, including its dipole nature. Understand how the structures of blood vessels (capillaries, arteries and veins) " relate to their functions. I) Know the cardiac cycle (atrial systole, ventricular systole and cardiac diastole) and relate the structure and operation of the mammalian heart, including the major blood vessels, to its function. I) Know the relationship between heart structure and function can be
1.2 1.3 1.4	overcome limitations of diffusion in meeting the requirements of organisms). Understand the importance of water as a solvent in transport, including its dipole nature. Understand how the structures of blood vessels (capillaries, arteries and veins) " relate to their functions. i) Know the cardiac cycle (atrial systole, ventricular systole and cardiac diastole) and relate the structure and operation of the mammalian heart, including the major blood vessels, to its function. ii) Know the relationship between heart structure and function can be investigated practically. Understand the course of events that leads to atherosclerosis (endothelial
1.2 1.3 1.4	overcome limitations of diffusion in meeting the requirements of organisms). Understand the importance of water as a solvent in transport, including its dipole nature. Understand how the structures of blood vessels (capillaries, arteries and veins) relate to their functions. I) Know the cardiac cycle (atrial systole, ventricular systole and cardiac diastole) and relate the structure and operation of the mammalian heart, including the major blood vessels, to its function. Ii) Know the relationship between heart structure and function can be investigated practically. Understand the course of events that leads to atherosclerosis (endothelial dysfunction, inflammatory response, plaque formation, raised blood pressure). Understand the blood-clotting process (thromboplastin release, conversion of prothrombin to thrombin and fibring and its role in cardiosacular

Get ahead by looking and seeing what the GCSE links are and make some summary GCSE

notes. Use this link to help you:

https://qualifications.pearson.com/content/dam/pdf/GCSE/Science/2016/teaching-and-learningmaterials/GCSE to A level Biology A.docx

E.g. You would have looked at blood vessels during your GCSE – make a table of the three vessels and describe the structure and function.

Ensure that this is completed for as many of the spec points as possible. This will really help you.

SUMMER TASKS

Task 1. Revision task

As you can see from the specification A-level Biology builds upon GCSE knowledge. You are expected to know your GCSE topics well. You will be **retested** on the GCSE to A-level links (topics will include osmosis, diffusion, active transport, heart structure, enzymes, basic cell structures, basic mitosis and some maths application questions). Please complete some revision activities based around these topics and show us evidence of your revision.

Task 2. Research task

As an A-level student it is imperative that you are able to carry out independent research and articulate what you have learnt. One of the biggest reason's students don't achieve the highest grades in Biology is that they can't explain their ideas well and that they don't read around the subject.

Choose one of these research questions. Research several articles and write a brief summary citing your evidence used.

- 1. Why is it essential to learn about cell structure when designing vaccines?
- 2. What is more important for an organism's survival- DNA or Protein?
- 3. Following the COVID pandemic, what changes would you make to healthcare and why?
- 4. How does the Palm Oil industry affect biodiversity and what are the possible solutions?
- 5. Pick an observable example of evolution and use that to explain the process of natural selection
- 6. You are stuck in a cave with no food. Why are these Biological molecules essential for your survival-lipids, carbohydrates and proteins?
- 7. Why are there different degrees of severity for cystic fibrosis?
- 8. DNA can be thought of as an instruction manual. Why can epigenetics be described as highlighting/annotating that manual?
- 9. How does heterozygosity and the crossing over of alleles so important for the survival of organisms?
- 10. Why is it so important to have seed banks? What would happen to the world without them?

Success Criteria:

- No more than 2 sides of A4 paper (typed or hand written)
- Use correct scientific terminology
- Use diagrams to support your work
- Don't just copy off the internet
- Have a list of references for your sources of information

Task 3. Maths in Biology

We expect you to start year 12 with a good level of maths. At least 10% of the exam will require you to utilize basic maths skills. The maths requirements can be found on pages 68-72 in the specification. Have a look through these pages and tick off all the skills you are comfortable with.

Download a copy of the maths student guide. Choose at least two areas you would like to improve and make some revision notes on these topics

https://qualifications.pearson.com/content/dam/pdf/A%20Level/Biology/2015/teaching-and-learningmaterials/Biology_Maths_Student_Guide_-_FINAL.pdf

Complete these basic maths questions. If you get stuck at any point go back to the student guide to get help. Remember you can always use a calculator in Biology!

SI Units and Prefixes

- 1. Using standard form, how many:
 - (a) mg in an kg?
 - (b) nmol in a mol?
 - (c) µm in a Mm?
 - (d) mm³ in a dm³?
- 2. (a) Convert 0.2 mm into µm
 - (b) Convert 6000 µm into mm
 - (c) Which is bigger, 0.005 mm or 50 µm?
 - (d) Which is bigger, 0.5 dm³ or 50 cm³?
- Convert these values to units with more suitable prefixes i.e. with values in the range 1–999. For example 0.0035 kg = 3.5 g.
 - (a) 0.002 56 mm
 - (b) 5 840 000 mm
 - (c) 2.62 × 10⁻⁵ g
 - (d) 1.98×10^7 ms

Ordinary and Standard Form

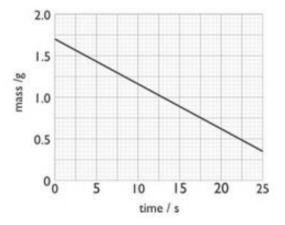
- 4. Convert these values to metres and write them in standard form.
 - (a) 1 mm
 - (b) 47 nm
 - (c) 7693 mm
 - (d) 181 795 µm
- 5. Write the following as decimals, choosing a suitable prefix.
 - (a) 1 × 10⁻⁴ m
 - (b) 3.9 × 10⁵ m
 - (c) 2.698 × 10⁻⁶ m
 - (d) 4.55 × 10² m
- 6. Calculate
 - (a) $(4.8 \times 10^4) \times (9.3 \times 10^6)$
 - (b) $(5.6 \times 10^8) \div (2.8 \times 10^2)$
 - (c) $(5.6 \times 10^4) + (1.5 \times 10^5)$
 - (d) $(9.8 \times 10^3) (1.7 \times 10^4)$

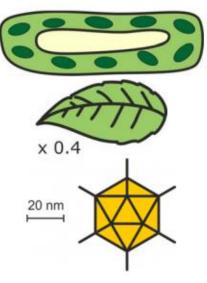
Significant Figures

- 7. State the number of significant figures in each of the following numbers.
 - (a) 1302
 - (a) 600
 - (a) 0.005601
 - (a) 0.04500
- 8. Round the following numbers to the specified number of significant figures.
 - (a) 1865 to two significant figures
 - (b) 0.358 to one significant figure
 - (c) 0.09076 to three significant figures
 - (d) 0.000 49648 to two significant figures

Magnification

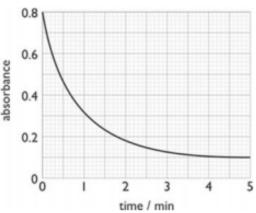
- (a) If this plant cell is 32 μm long, what is the magnification of the drawing?
 - (b) How long is this leaf in real life?
 - (c) Calculate the true length of this virus.

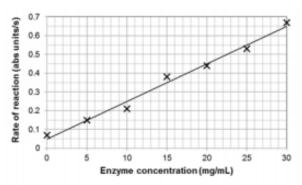

Percentage Change


- 15. Calculate the percentage change if:
 - (a) a carrot chip changes from 5 mm long to 4.8 mm long in salt solution.
 - (b) a reaction produces 22 mL of gas per min at 20°C and 48 mL of gas per min at 30°C.
 - (c) the number of bacterial cells in a colony changes from 5 × 10⁴ to 2 × 10⁵ after an hour.
 - (d) an athlete's pulse rate changes from 165 to 75 beats per min after a race.

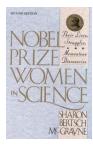
Gradients and Rates

 The graph shows the change in mass when gas is evolved during a chemical reaction.


Calculate the rate of reaction. Don't forget the units.


Biology Student Maths Guide

- The graph shows the change in absorbance when an enzyme is mixed with a coloured substrate.
 - (a) Calculate the initial rate of reaction over the first 0.2 min.
 - (b) Calculate the rate of reaction at 3 min.


Equation for a straight line (y = mx + c)

 The graph shows the results of an investigation into the effect of enzyme concentration on the rate of reaction, measured using a colorimeter. A line of best fit has been drawn.

- (a) Using the equation **y** = **mx** + **c**, calculate **m** and **c**.
- (b) Use these values to determine the rate of reaction at an enzyme concentration of 50 mg ml⁻¹.

Task 4. Reading for Biology

Read Nobel prize for women in science. Sharon Bertsch McGrayne explores the lives and achievements of fifteen women scientists who either won a Nobel Prize or played a crucial role in a Nobel Prize - winning project. The book reveals the relentless discrimination these women faced both as students and as researchers. Their success was due to the fact that they were passionately in love with science.

Below are some equally amazing reads that you should check out- some come recommended directly by your teachers. You can also look on Amazon or Waterstones in the 'popular science' section to choose your own.

WIDER READING

It is essential that you have an appreciation of Biology within the wider world. This will make you a better scientist by helping you make links between topics, understand application questions better and be able to articulate your ideas more clearly using scientific language. It will also be beneficial to your UCAS applications by showing you have a genuine passion for your subject.

You should look through the science section of a good newspaper such as The Guardian or The Independent every week.

You should also be looking at published journals such as Scientific America, New Scientist or National Geographic, all of which can be bought from newsagents such as WHSmith

Spend your summer finding out why you love Biology. We look forward to working with you in September!